Accueil > Communication > Newsletter scientifique > Publications

Publications RSS des Publications

Page(s) : < | 1 | ... | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ... | 185 |

30 août 2017

Unexpected changes in community size structure in a natural warming experiment [Nature Climate Change]

Subject terms : climate-change ecology, ecological modelling, ecosystem ecology, food webs, freshwater ecology

Natural ecosystems typically consist of many small and few large organisms. The scaling of this negative relationship between body mass and abundance has important implications for resource partitioning and energy usage. Global warming over the next century is predicted to favour smaller organisms, producing steeper mass–abundance scaling and a less efficient transfer of biomass through the food web5. Here, we show that the opposite effect occurs in a natural warming experiment involving 13 whole-stream ecosystems within the same catchment, which span a temperature gradient of 5–25 °C. We introduce a mechanistic model that shows how the temperature dependence of basal resource carrying capacity can account for these previously unexpected results. If nutrient supply increases with temperature to offset the rising metabolic demand of primary producers, there will be sufficient resources to sustain larger consumers at higher trophic levels. These new data and the model that explains them highlight important exceptions to some commonly assumed ‘rules’ about responses to warming in natural ecosystems.

Lire la suite

30 août 2017

Population extinctions can increase metapopulation persistence [Nature Ecology & Evolution]

Keywords : ecological modelling, population dynamics, theoretical ecology

Metapopulations persist when local populations are rapidly recolonized following local extinctions. Such persistence requires asynchrony ; simultaneous crashes of all populations would leave no source of recolonization. We show theoretically and experimentally that catastrophic population extinctions themselves can promote metapopulation persistence, by preventing spatial synchrony and thus enhancing recolonization. We refer to this behaviour as the ‘spatial hydra effect’ : as with the mythical hydra that grows two new heads when one is removed, extinctions can increase recolonization. The effect is robust, occurring in a wide range of theoretical models exhibiting cyclic or quasi-cyclic population dynamics. In a laboratory microcosm experiment using cyclic protist predator–prey metapopulations, catastrophic perturbations wiping out populations but leaving the patch otherwise unchanged increased metapopulation persistence when high dispersal rates would otherwise have led to spatially synchronous extinctions of all populations. We discuss several candidate examples of the spatial hydra effect in nature.

Lire la suite

30 août 2017

Sound physiological knowledge and principles in modeling shrinking of fishes under climate change [Global Change Biology]

Keywords : body size, fish, gill, growth, oxygen, physiology, warming

One of the main expected responses of marine fishes to ocean warming is decrease in body size, as supported by evidence from empirical data and theoretical modeling. The theoretical underpinning for fish shrinking is that the oxygen supply to large fish size cannot be met by their gills, whose surface area cannot keep up with the oxygen demand by their three-dimensional bodies. However, Lefevre et al. (Global Change Biology, 2017, 23, 3449–3459) argue against such theory. Here, we re-assert, with the Gill-Oxygen Limitation Theory (GOLT), that gills, which must retain the properties of open surfaces because their growth, even while hyperallometric, cannot keep up with the demand of growing three-dimensional bodies. Also, we show that a wide range of biological features of fish and other water-breathing organisms can be understood when gill area limitation is used as an explanation. We also note that an alternative to GOLT, offering a more parsimonious explanation for these features of water-breathers has not been proposed. Available empirical evidence corroborates predictions of decrease in body sizes under ocean warming based on GOLT, with the magnitude of the predicted change increases when using more species-specific parameter values of metabolic scaling.

Lire la suite

30 août 2017

Ecosystem functioning is enveloped by hydrometeorological variability [Nature Ecology & Evolution]

Keywords : carbon cycle, climate-change ecology, ecological modelling, hydrology

Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate–biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model–data integration opportunities in Earth system sciences.

Lire la suite

30 août 2017

Trophic consequences of introduced species : comparative impacts of increased inter-specific versus intra-specific competitive interactions [Functional Ecology]

Keywords : biological invasions, global change, isotopic niche, niche divergence

1.Invasive species can cause substantial ecological impacts on native biodiversity. Whilst ecological theory attempts to explain the processes involved in the trophic integration of invaders into native food webs and their competitive impacts on resident species, results are equivocal. In addition, quantifying the relative strength of impacts from non-native species (inter-specific competition) versus the release of native conspecifics (intra-specific competition) is important but rarely completed.
2.Two model non-native fishes, the globally invasive Cyprinus carpio and Carassius auratus, and the model native fish Tinca tinca, were used in a pond experiment to test how increased intra- and inter-specific competition influenced trophic niches and somatic growth rates. This was complemented by samples collected from three natural fish communities where the model fishes were present. The isotopic niche, calculated using stable isotope data, represented the trophic niche.(...)

Lire la suite

Page(s) : < | 1 | ... | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ... | 185 |