Supervisory authorities

CNRS

Our LABEX

Our Networks

Search




Visitors logged in: 1


Home > Directory

Pujol Benoît

PRADA

Chargé de Recherche au CNRS (Habilité à Diriger des Recherches)
Follow me on twitter: @BenoitPujol
ORCID: 0000-0001-9703-6760
ResearcherID: A-8858-2011
PI ERC CoG ANGI 681484
PI ANR JCJC CAPA

Icone contact Email

Icone telephone +33 (0)5 61 55 69 36


Evolutionary quantitative genetics research group Groupe d’étude de génétique quantitative évolutive

Do species have the ability to adapt? Our research seeks to understand how the evolutionary history of species, their interaction with environmental conditions and their biotic interactions shape their ability to adapt. We are particularly interested in identifying factors that limit or improve species potential to respond to selection.

Est-ce que les espèces ont la capacité de s’adapter à de nouvelles contraintes environnementales ? Nos recherches testent l’impact de l’histoire évolutive des populations, de leurs interactions avec d’autres espèces et avec leur environnement abiotique sur leur potentiel adaptatif. Nous sommes particulièrement intéressés par le fait d’identifier les facteurs qui limitent ou à l’inverse augmentent la capacité des espèces à répondre à la sélection.


ERC CoG ANGI project: assessing the adaptive value of non genetic inheritance

Projet ERC CoG ANGI : évaluer la valeur adaptative de l’hérédité non génétique


This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No [681484] ANGI)


Research group / groupe de recherche


Benoit PUJOL
PI ANGI and CAPA projects (quantitative genetics in the wild, non genetic inheritance and adaptation)
Coordinateur projets ANGI et CAPA (génétique quantitative dans les populations naturelles, hérédité non génétique et adaptation)


Sara MARIN
ERC research assistant (plant adaptation -experimental biology)
Ingénieure d’étude ERC (adaptation des plantes -biologie expérimentale)


Mathieu LATUTRIE
ERC research assistant (Quantitative genetics in wild populations and experimental response to selection)
Ingénieur de recherche ERC (génétique quantitative en populations naturelles et réponse expérimentale à la sélection)


Isabel WINNEY
ERC Postdoctoral fellow (Quantitative genetics in wild populations)
Chercheuse postdoctorale ERC (Génétique quantitative en populations naturelles)


Caroline THOMSON
ERC Postdoctoral fellow (Selection and demography in wild populations)
Chercheuse postdoctorale ERC (Sélection et démographie en populations naturelles)


Mathilde MOUSSET
ERC Postdoctoral fellow (Phenotypic plasticity and selection)
Chercheuse postdoctorale ERC (Plasticité phénotypique et sélection)


Delphine GOURCILLEAU
ERC Postdoctoral fellow (epigenetics)
Chercheuse postdoctorale ERC (Epigénétique)


Pascal MARROT
ERC Postdoctoral fellow (quantitative genetics and selection)
Chercheur postdoctoral ERC (génétique quantitative et sélection)


Océane SALLES
ERC Postdoctoral fellow (quantitative genetics)
Chercheuse postdoctorale ERC (quantitative genetics)



Project summary / Résumé du projet
Our ability to predict adaptation and the response of populations to selection is limited. Solving this issue is a fundamental challenge of evolutionary ecology with implications for applied sciences such as conservation, and agronomy. Non genetic inheritance (NGI; e.g., ecological niche transmission, epigenetic transmission) is suspected to play a foremost role in adaptive evolution but such hypothesis remains untested. Using quantitative genetics in wild plant populations, experimental evolution, and epigenetics, we will assess the role of NGI in the adaptive response to selection of plant populations. The ANGI project will follow the subsequent research program: (1) Using long-term survey data, we will measure natural selection in wild populations of Antirrhinum majus within its heterogeneous array of micro-habitats. We will calculate the fitness gain provided by multiple traits and stem elongation to plants growing in bushes where they compete for light. Stem elongation was shown to depend on epigenetic variation in several species. (2) Using a statistical approach that we developed, we will estimate the quantitative genetic and non genetic heritability of traits. (3) We will identify phenotypic changes caused by fitness that are based on genetic variation and NGI and assess their respective roles in adaptive evolution. (4) In controlled conditions, we will artificially select for increased stem elongation in clonal lineages, thereby excluding DNA variation. We will quantify the non genetic response to selection and test for a quantitative epigenetic signature of selection. (5) We will build on our results to generate an inclusive theory of genetic and non genetic natural selection. ANGI builds on a confirmed expertise in selection experiments, quantitative genetics and NGI. In addition, the availability of survey data provides a solid foundation for the achievement of this project. Our ambition is to evaluate whether original mechanisms (e.g., NGI) underlie adaptation that are an alternative to selection based on standing genetic variation. Why will this project have a broad impact on life sciences? This project will integrate new findings into an inclusive theory of natural selection. Most [nearly all] research programs to date consider that environmental variation is either imposing a selective demand on organisms or interferes with the process of adaptive evolution. Genetic diversity is the key parameter used to study the evolution of species, predict their adaptive potential, manage genetic resources in agronomy, plan biological conservation strategies and communicate with a general audience on these topics. There is an emerging demand for clarifications by conservation agencies and crop and animal breeders in agronomy to clarify: “how to use the knowledge on the environmental background of populations to predict their response to selection and more generally their adaptive potential?”. There is also a demand by fundamental researchers: Theoreticians call for new concepts and empirical data providing quantitative estimates to parameterize models of adaptive dynamics. Evolutionary biologists investigating the paradoxical absence of genetic evolution in response to selection in natural populations are calling for empirical data on environmental effects shortcutting genetic selection. The ANGI project will participate to answer those demands. We will clarify the extent to which quantified environmentally induced phenotypic variation and epigenetic variability at the molecular level can be used to predict the evolutionary potential of natural populations and the response to artificial selection. Because the ANGI project is already positioned at the interface of proactive demands, we expect our results will be valorized immediately by their communication. It is important to note that public awareness and interest for these issues is increasing daily in the media and in science outreach programs conducted by museums and in public science fairs. We therefore expect a very positive reception of our findings. We will synthesize our findings in an inclusive genetic and non genetic theory of natural and artificial selection and will pay a particular attention to make sure that such theory is accessible to a broad range of scientists and the general public. The ANGI project, “in short”: We will pursue multiple objectives distributed in 5 work packages (WP): WP 1 to 3 will respectively aim at assessing: 1. selection, 2. genetic and non genetic inheritance, and 3. adaptive evolution in A. majus natural populations. WP 4 is experimental and will aim at dissecting the mechanisms underlying the non genetic response to artificial selection in A. majus. Work package 5 will aim at integrating those findings in an inclusive genetic and non genetic theory of natural and artificial selection.

Up to date project implications / impact du projet au fil de l’eau
At this stage of the project (18 months), most advances beyond the state of art are conceptual advances and theoretical predictions. These aspects have been addressed in conferences but are not yet published in peer reviewed articles in international journals. There is still a lot of debate animating the scientific community about the evolutionary significance of non genetic inheritance (e.g., ecological niche transmission and epigenetic transmission). A large part of the argument between pros and cons originates in the complexity surrounding a non equivocal separation of genetic and non genetic transgenerational variation. Evidence keeps accumulating that plasticity and epigenetic variation can be inherited, be it directly or through phenotypic reconstruction in similar environmental conditions. However, most experimental results are based on studies where non genetic variation was isolating from genetic variation (e.g., by using one lineage of clones). Evidence for a direct role played by non genetic variation in evolution in nature where there is genetic variation is still absent from the literature. We are developing methods to separate genetic and non genetic causes of phenotypic variation in natural and experimental populations. So far, our conceptual progress supports the need to assess empirically the role of non genetic inheritance in adaptive evolution. Our extensive surveys of the scientific literature support the hypothesis that it has the potential to influence the outcome of evolution and that epigenetic variation may play a crucial role in relaying environmental variation across generations and serve as standing variation upon which selection can act. It is important to note that these hypotheses remain to be tested empirically. We are currently running empirical research in order to test for these hypotheses and communicating on the fact that the absence of empirical evidence, as well as the existence of partial evidence are neither validating nor invalidating this hypothesis, which goes against several papers published in the scientific literature that argue one way or another without their conclusions being rooted on solid empirical evidence. It is crucial to test this hypothesis, be it confirmed or rejected, because a validation of this hypothesis would lead to considering a new source of environmentally induced opportunities for adaptive evolution. The focus of many studies in the actual context of global change is to assess the cost of changes in the environmental background of populations in terms of diversity loss. The ANGI project proposes an alternative perspective by investigating what are the potential effects of environmental modifications in terms of evolutionary potential. Our aim is to assess whether alternative sources of adaptive evolution can be identified in natural populations. Such knowledge would have implications for building original strategies in applied conservation based on the non genetic adaptive potential of populations. Most [nearly all] research programs to date consider that environmental variation is either imposing a selective demand on organisms or interferes with the process of adaptive evolution. Genetic diversity is the key parameter used to study the evolution of species, predict their adaptive potential, manage genetic resources in agronomy, plan biological conservation strategies and communicate with a general audience on those topics. There is an emerging demand for clarifications by conservation agencies and crop and animal breeders in agronomy to clarify how to use the knowledge on the environmental background of populations to predict their response to selection and more generally their adaptive potential. There is also a demand by fundamental researchers: Theoreticians call for new concepts and empirical data providing quantitative estimates to parameterize models of adaptive dynamics. Evolutionary biologists investigating the paradoxical absence of genetic change in response to selection in natural populations are calling for empirical data on environmental effects shortcutting the microevolutionary response to selection. The ANGI project will participate to answer those demands. We will clarify the extent to which quantified environmentally induced phenotypic variation and epigenetic variability at the molecular level can be used to predict the evolutionary potential of natural populations and the response to artificial selection. Because the ANGI project is already positioned at the interface of proactive demands, we expect our results will be valorized immediately by their communication. It is important to note that public awareness and interest for these issues is increasing daily in the media and in science outreach programs conducted by museums and in public science fairs. We therefore expect a very positive reception of our findings. We will synthesize our findings in an inclusive genetic and non genetic theory of natural and artificial selection and will pay a particular attention to make sure that such theory is accessible to a broad range of scientists and the general public.

ANR CAPA: assessing the adaptive potential of Antirrhinum majus populations in the Pyrenees

Projet ANR CAPA : évaluer la capacité d’adaptation des populations d’Antirrhinum majusdans les Pyrénées


This project has received funding from the French National Research Agency (ANR) under the 2013 young researcher generic call (grant agreement No ANR-13-JSV7-0002)


Project summary / Résumé du projet
Comment évaluer la capacité d’adaptation des plantes aux changements environnementaux ? Face aux changements globaux qui menacent la survie des espèces, le projet CAPA propose de comparer et d’ajuster les approches qui permettent d’évaluer la capacité d’adaptation des populations végétales naturelles, tout en les appliquant au cas du muflier dans les Pyrénées. Evaluer le potentiel évolutif en fonction de la diversité génétique et de l’environnement Les agences de conservation biologique expriment une demande claire : « comment utiliser les connaissances existantes ; diversité des populations et contexte environnemental, pour prédire leur capacité d’adaptation ? » Notre objectif est d’identifier comment la caractérisation génétique des populations (par des méthodes accessibles) et celle de leur environnement affectent ce potentiel et de délivrer une démarche applicable et pratique dans ce but. Combiner l’apport de différentes disciplines pour plus d’efficacité et plus d’accessibilité En utilisant une approche pluridisciplinaire, nous combinons les avantages de différentes méthodes. Nous déterminons actuellement si les populations adaptées à leur environnement (génétique des populations) peuvent survivre face à de nouveaux environnements (expérimentation végétale) et répondre à la sélection. Nous confronterons la valeur prédictive de ces différents outils pour délivrer un guide pratique pour les scientifiques et les acteurs de la conservation.

IDEX UNITI GENEMOV project: colonization of agrosystems by the roe deer

Projet IDEX UNITI : colonisation des agrosystème par le chevreuil européen


This project has received funding from the French National Research Agency (ANR) Toulouse IDEX initiative


Project summary / Résumé du projet
Evaluation de l’impact de l’hétérogénéité de l’environnement sur la colonisation des agrosystèmes par le chevreuil La persistance des populations naturelles dans les habitats gérés par l’Homme dépend des réponses comportementales que les individus mettent en place pour gérer les compromis entre l’acquisition des ressources nutritives et l’évitement des risques (ex : collision, prédation, chasse, parasites). Un enjeu important est de caractériser les mécanismes écologiques et évolutifs qui sous-tendent ces réponses : Il faut établir si elles sont inscrites de manière pérenne dans le patrimoine génétique des animaux (réponse micro-évolutive) ou s’il s’agit de réponses rapides et directes à l’environnement n’impliquant pas la variabilité génétique (plasticité phénotypique). Dans le cadre de cette étude, nous étudierons une population de chevreuils (Capreolus capreolus) évoluant dans un paysage agricole hétérogène composés de haies, bosquets (habitats refuges), prairies et cultures. Cette population présente une importante variabilité comportementale marquée par la présence de tactiques individuelles de mouvement et d’occupation de l’espace qui traduisent la manière dont les individus gèrent les compromis entre évitement des risques et accès aux ressources. En combinant des approches d’écologie spatiale, comportementale, de génomique et de génétique quantitative, ce projet vise à évaluer (i) l’architecture génétique de ces tactiques individuelles, (ii) les corrélations génétiques entre les différents de traits de mouvement, d’occupation de l’espace et de vigilance impliqués dans ces tactiques de réponse (présence de syndromes comportementaux) et (iii) les corrélations génétiques entre ces tactiques et l’état physiologique et immunitaire des individus.

doctorat en cours de Laura GERVAIS
IDEX PhD student (quantitative genetics and behaviour)
étudiante en thèse IDEX (Génétique quantitative et comportement)



Side projects / Projets annexes
  • Adaptive potential of coral reef clownfish
    Capacité d’adaptation des poissons clowns de récifs coralliens
  • Genetic constraints to the evolution of sex-linked phenotypes
    Contraintes génétiques à l’évolution des caractères phénotypiques liés au sexe
  • The evolution of senescence in plants
    Evolution de la sénescence chez les plantes
  • Agroecology and crop plants evolution under domestication
    Agroécologie et évolution lors de la domestication des plantes cultivées

Former members
anciens membres de l’équipe
  • Aurore BONTEMPS (IDEX Postdoctoral fellow) - gene flow and dispersal in wild populations
  • Juliette ARCHAMBEAU (research assistant) - phenotypic plasticity and local adaptation
  • Hélène HOLOTA (EDB Engineer) - molecular biology-genetics
  • Coline JAWORSKI (PHD student) - Evolution of species interaction networks in the Pyrenees
  • Joris BERTRAND (PHD student) - Causes underlying the evolutionary diversification of the bird Zosterops borbonicus on the island of La Réunion

Acknowledgements for past funding
Remerciements aux financeurs precedents

School of Biology / Enseignements

  • Participation to the "Plant Sciences" master program (Master Biologie Végétale)
  • Participation to the "ecology" master program (Master Ecologie)
  • Participation to the "ecology organism and population biology" undergraduate program (L BOPE)
  • Participation to the "ecology, veterinary, agronomy and biological engineering sciences" doctoral school (SEVAB)
  • Participation to the high school teachers training program in evolutionary biology (IUFM and Rectorat


Students supervision (while at this department)

  • 2016 Gabriel OLLIVIER (Common garden experiment CAPA), Vincent BAILLET (Common garden experiment CAPA + wild populations survey), Emilie CORIAT (Common garden experiment CAPA), Théodore PERRON-KYRITSOS (experimental measures CAPA), Mathilde VERGNE (wild populations survey), Nina GAZAL (wild populations survey), Sarah RANTY wild populations survey), Robin SALIO (wild populations survey), Alexandre MEUNIER (Master student internship under the supervision of Aurore Bontemps – gene flow among populations)
  • 2015 Juliette ARCHAMBEAU (Common garden experiment CAPA), Alice Gandara (Common garden experiment CAPA + wild populations survey), Morgane ILLES (Common garden experiment CAPA) and Gabriel OLLIVIER (Common garden experiment CAPA + wild populations survey), Nils AMBEC (wild populations survey), Julie GUILLEMOT (wild populations survey), Alexandre MEUNIER (wild populations survey) and Candice POU (wild populations survey), Mylène LASCOSTE (experimental measures), Fanny CHABOU (molecular biology), Laura GARAUD (Master student internship under the supervision of Benoit Pujol – Phenotypic plasticity)
  • 2014 Anne Sophie MOULD (wild populations survey), Benjamin LAFFITTE (wild populations survey), Manon GUILAIN-SAVIANE (wild populations survey), Pauline GAUD (wild populations survey), Sacha JULIEN (wild populations survey), Titouan DEZAEL (wild populations survey), Julien BOUNET and Rogini RUNGHEN (Master student internship under the supervision of Benoit Pujol – population genetics), Christel BLOT (phenotypic plasticity), Juliette ARCHAMBEAU (phenotypic plasticity)
  • 2013 Juliette ARCHAMBEAU (wild populations survey), Julien BOUNET (wild populations survey), Camille FAVERO (wild populations survey), Laura GARAUD (wild populations survey), Pierre-Henri MICHEL (wild populations survey), Geoffroy VILLEJOUBERT (wild populations survey)
  • 2012 Cyril BARBET (wild populations survey), Fanny CHABOUD (wild populations survey), Jonathan DUPRIX (wild populations survey), Pauline QUINTIN (wild populations survey), Mélanie TANRATTANA (wild populations survey), Ingrid AURIA (molecular biology), Arthur AVILEZ (molecular biology)
  • 2011 Lisa MORENO (wild populations survey), Antonin VIDEAU (wild populations survey), Ousama CHAMSI (molecular biology), Lucile DEWULF (molecular biology), Pascal MARROT (Master 2 student internship under the supervision of Benoit Pujol – quantitative genetics of senescence)
  • 2010 Pascal MARROT (Master 1 student internship under the supervision of Benoit Pujol – quantitative genetics of sexual dimorphism)
  • 2009 Yasmin LATOUR (Master 1 student internship under the supervision of Benoit Pujol – sexual dimorphism)

Ongoing collaborations
  • Centre de Recherche Insulaire et Observatoire de l’Environnement de Perpignan/Moorea, France - Serge Planes
  • Centre d’Ecologie Fonctionnelle et Evolutive de Montpellier, France - Anne Charmantier & Céline Teplitsky
  • Station d’Ecologie Théorique et Expérimentale de Moulis, France - Simon Blanchet
  • Laboratoire des Interactions Plantes-Microorganismes de Toulouse, France – Fabrice Roux
  • Laboratoire Peuplements Végétaux et Bioagresseurs en Milieu Tropical de Saint Pierre de La Réunion, France - Benoit Facon

  • Laboratoire Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales de Monpellier, France - Laurène Gay

  • Laboratoire Ecologie des Forêts Méditerranéennes d’Avignon, France – Ivan Scotti
  • University of Lausanne, Switzerland - John Pannell
  • University and Institute of Science and Technology of Vienna, Austria - David Field & Nick Barton

Current other attributions
  • Scientific committee LABEX TULIP
  • Scientific committee FR3450 Agrobiosciences, Interacions, Biodiversité
  • EDB Lab representative for the PABS-B project (Plan Campus university building for the study of life sciences - 14M - ongoing operation)
  • Scientific and management committee of the FR3450 AIB high throughput phenotyping platform (TPMP - 3M - ongoing operation)
  • Associate Editor of Peer Reviewed International Scientific Journal: Botany Letters

Publications (google scholar citations, ISI citations)


2017. Ripple W.J., Wolf C., Newsome T.M., Galetti M. Alamgir M., Crist E., Mahmoud M.I., Laurance W.F., 15,364 scientist signatories from 184 countries. World scientists’ warning to humanity: a second notice. Bioscience doi.org/10.1093/biosci/bix125 OPEN ACCESS Link


2017. Kluyver T.H., G. Jones, B. Pujol, C. Benett, E.J. Mockford, M. Charles, M. Rees & C.P. Osborne. Unconscious selection drove seed enlargement in vegetable crops. Evolution Letters 1:64-72 OPEN ACCESS Link


2017. Pujol B., J. Archambeau, A. Bontemps, M. Lascoste, S. Marin & A. Meunier. Mountain landscape connectivity and subspecies appurtenance shape genetic differentiation in natural populations of the snapdragon (Antirrhinum majus L.). Botany Letters 164:111-119 OPEN ACCESS Link ZENODO OPEN ACCESS TEXT AND DATA REPOSITORY


2016. Salles O.C., B. Pujol, J.A. Maynard, G.R. Almany, M.L. Berumen, G.P. Jones, P. Saenz-Agudelo, M. Srinivasan, S.R. Thorrold & S. Planes. First genealogy for a wild marine fish population reveals multi-generational philopatry. Proceedings of the National Academy of Sciences of the USA 113:13245–13250 Link


2016. Mills J.A., C. Teplitsky, B. Arroyo, A. Charmantier, P.H. Becker, T.R. Birkhead, P. Bize, D.T. Blumstein, C. Bonenfant, S. Boutin, A. Bushuev, E. Cam, A. Cockburn, S.D. Côté, J.C. Coulson, F. Daunt, N.J. Dingemanse, B. Doligez, H. Drummond, R.H.M. Espie, M. Festa-Bianchet, F. Frentiu, J.W. Fitzpatrick, R.W. Furness, D. Garant, G. Gauthier, P.R. Grant, M. Griesser, L. Gustafsson, B. Hansson, M.P. Harris, F. Jiguet, P. Kjellander, E. Korpimäki, C.J. Krebs, L. Lens, J.D.C. Linnell, M. Low, A. McAdam, A. Margalida, J. Merilä, A.P. Møller, S. Nakagawa, J.-Å. Nilsson, I.C.T. Nisbet, A.J. van Noordwijk, D. Oro, T. Pärt, F. Pelletier, J. Potti, B. Pujol, D. Réale, R.F. Rockwell, Y. Ropert-Coudert, A. Roulin, J.S. Sedinger, J.E. Swenson, C. Thébaud, M.E. Visser, S. Wanless, D.F. Westneat, A.J. Wilson & A. Zedrosser. Solutions for archiving data in long-term studies: a reply to Whitlock et al. Trends in Ecology & Evolution 31:85-87 Link


2016. Bertrand J.A.M., B. Delahaie, Y.X.C.Bourgeois, T. Duval, R. Garcia-Jimenez, J. Cornuault, B. Pujol, C. Thébaud & B. Mila. The role of selection in driving population differentiation along an elevational gradient in an island bird. Journal of Evolutionary Biology 29:824–836 Link


2015. Mills J.A., C. Teplitsky, B. Arroyo, A. Charmantier, P.H. Becker, T.R. Birkhead, P. Bize, D.T. Blumstein, C. Bonenfant, S. Boutin, A. Bushuev, E. Cam, A. Cockburn, S.D. Côté, J.C. Coulson, F. Daunt, N.J. Dingemanse, B. Doligez, H. Drummond, R.H.M. Espie, M. Festa-Bianchet, F. Frentiu, J.W. Fitzpatrick, R.W. Furness, D. Garant, G. Gauthier, P.R. Grant, M. Griesser, L. Gustafsson, B. Hansson, M.P. Harris, F. Jiguet, P. Kjellander, E. Korpimäki, C.J. Krebs, L. Lens, J.D.C. Linnell, M. Low, A. McAdam, A. Margalida, J. Merilä, A.P. Møller, S. Nakagawa, J.-Å. Nilsson, I.C.T. Nisbet, A.J. van Noordwijk, D. Oro, T. Pärt, F. Pelletier, J. Potti, B. Pujol, D. Réale, R.F. Rockwell, Y. Ropert-Coudert, A. Roulin, J.S. Sedinger, J.E. Swenson, C. Thébaud, M.E. Visser, S. Wanless, D.F. Westneat, A.J. Wilson & A. Zedrosser. Archiving primary data: solutions for long-term studies. Trends in Ecology & Evolution 30:581-589 Link


2015. Pujol B.. Genes and quantitative genetic variation involved with senescence in cells, organs and the whole plant. Frontiers in Genetics doi: 10.3389/fgene.2015.00057 Link

2014. Pujol B. Génétique quantitative : l’appel sauvage. Dossier d’habilitation à diriger des recherches de l’Université Toulouse III Paul Sabatier.

2014. Pujol B., P. Marrot & J.R. Pannell. A quantitative genetic signature of senescence in a short lived perennial plant. Current Biology 24:744-747 Link

2014. Bertrand J., Y.X.C. Bourgeois, B. Delahaie, T. Duval, R. Garcia-Jimenez, J. Cornuault, B. Mila, B. Pujol, & C. Thébaud. Extremely reduced dispersal and geneflow in an island bird. Heredity 112:190-196 Link

2013. Carré C., F. Gamboa, B. Pujol, & E. Manfredi. Genetic Links among individuals: from genealogies to molecular markers. ABG-Botany Letters 160:221-226 Link

2013. Pujol B. & J-P. Galaud. A practical guide to quantifying the effect of genes underlying adaptation in a mixed genomics and evolutionary ecology approach. ABG-Botany Letters 160:197-204 Link — DATA associated with the tutorial in the paper can be found at the bottom of this page — R protocol available upon request because it is changed and improved every so often

2013. Danchin E., B. Pujol & R. Wagner. The double pedigree: A method for studying culturally and geneticlly inherited behaviour in tandem. PLoS ONE 8(5) e61254 Link

2013. Mesoudi A., S. Blanchet, A. Charmantier, E. Danchin, L. Fogarty, E. Jablonka, K.N. Laland, T.J.H. Morgan, G.B. Müller, J. Odling-Smee, B. Pujol. Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. Biological Theory 7:189-195 Link

2013. Khimoun A., J. Cornuault, M. Burrus, B. Pujol, C. Thébaud & C. Andalo. Ecology predicts parapatric distributions in two closely related Antirrhinum majus subspecies. Evolutionary Ecology 27:51-64.Link

2012. McKey D., M. Elias, B. Pujol, A. Duputié, M. Delêtre, & D. Renard. Maintien du potentiel adaptatif chez les plantes domestiquées à propagation clonale: leçons de gestion par les cultivateurs de manioc amérindiens. Revue d’éthnoécologie 1 Link

2012. Debout G.D.G., E. Lhuillier, P-J. G. Malé, B. Pujol & C. Thébaud (all authors participated equally to this work). Development and characterization of 24 polymorphic microsatellite loci in two Antirrhinum majus subspecies (Plantaginaceae) using pyrosequencing technology. Conservation Genetics Resources 4:75-79Link

2011. Danchin E., A. Charmantier, F.A. Champagne, A. Mesoudi, B. Pujol & S. Blanchet. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics 12:475-486. Link

2011. Khimoun A., M. Burrus, C. Andalo, Z.-L. Liu, C. Vicédo-Cazettes, C. Thébaud & B. Pujol. Locally asymmetric introgressions between subspecies suggest circular range expansion at the Antirrhinum majus global scale. Journal of Evolutionary Biology 24:1433-1441. Link

2010. Pujol B., D.J. Obbard & J.R. Pannell. Symptoms of population range expansion : lessons from phenotypic and genetic differentiation in hexaploid Mercurialis annua. Plants Ecology & Diversity 3:103-108. Link

2010. McKey D., M. Elias, B. Pujol & A. Duputié. The evolutionary ecology of clonally domesticated plants. New Phytologist 186:318-332. Link 

2010. Andalo C., M.B. Cruzan, C. Cazettes, B. Pujol, M. Burrus & C. Thébaud. Post-pollination barriers do not explain the persistence of two distinct Anthirrhinum subspecies with parapatric distributions. Plant Systematics and Evolution 286:223-237. Link

2009. Pujol B., S.-R. Zhou, J. Sanchez Vilas & J.R. Pannell. Reduced inbreeding depression after species range expansion. Proceedings of the National Academy of Sciences of the USA 36:15379-15383. Link

2009. Pannell J.R. & B. Pujol. The paradoxical spread of a new Y chromosome - a novel explanation. Trends in Ecology & Evolution 24:59-63. Link

2008. Pujol B., A.J. Wilson, R.I.C. Ross & J.R. Pannell. Are QST - FST comparisons for natural populations meaningful? Molecular Ecology 17:4782-4785. Link

2008. Pujol B. & J.R. Pannell. Reduced responses to selection after species range expansion. Science 321:96. Link

2008. Mondolot L., A. Marlas, D. Barbeau, A. Gargadennec, B. Pujol & D. McKey. Domestication and defence: foliar tannins and C/N ratios in cassava and a close wild relative. Acta Oecologica 34:147-154. Link

2008. Pannell J.R., M.E. Dorken, B. Pujol & R. Berjano. Gender variation and transitions between sexual systems in Mercurialis annua (Euphorbiaceae). International Journal of Plant Sciences 169:129-139. Link

2008. Pujol B., J.L. Salager, M. Beltran, S. Bousquet & D. McKey. Photosynthesis and leaf structure in domesticated cassava (Euphorbiaceae) and a close wild relative: Have leaf photosynthetic parameters evolved under domestication? Biotropica 40:305-312. Link

2007. David P., B. Pujol, F. Viard, V. Castella & J. Goudet. Reliable selfing rate estimates from imperfect population genetic data. Molecular Ecology 16:2474-2487. Link

2007. Pujol B., F. Renoux, M. Elias, L. Rival & D. McKey. The unappreciated ecology of landrace populations : Conservation consequences of soil seed banks in cassava. Biological Conservation 136:541-551. Link

2006. Pujol B. & D. McKey. Size asymmetry in intraspecific competition and the density-dependence of inbreeding depression in a natural plant population&nbsp: a case study in cassava (Manihot esculenta Crantz, Euphorbiaceae). Journal of Evolutionary Biology 19:85-96. Link

2005. Pujol B., G. Mühlen, N. Garwood, Y. Horoszowski, E.J.P. Douzery & D. McKey. Evolution under domestication : contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytologist 166:305-318. Link

2005. Pujol B., P. David & D. McKey. Microevolution in agricultural environments: how a traditional farming practice favors heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecology Letters 8:138-147. Link

2002. Pujol B., G. Gigot, G. Laurent, M. Pinheiro-Kluppel, M. Elias, M. Hossaert-McKey & D. McKey. Germination ecology of cassava (Manihot esculenta Crantz, Euphorbiaceae) in traditional agroecosystems&nbsp: Seed and seedling biology of a vegetatively propagated domesticated plant. Economic Botany 56:366-379. Link

Book


2010. Prévot-Juliard A.C., V. Maris, K. Alain, Y. Ameeruddy-Thomas, V. Devictor, A. Langlais, F. Not, S. Puijalon & B. Pujol. BiodiversitéS. Nouveaux regards sur le vivant. Le cherche midi, Paris, France, pp. 175. Link

Book chapters


2012. McKey D.B., M. Elias, B. Pujol & A. Duputié. Ecological approaches to crop domestication. Pages 377-406 in Gepts P., T.R. Famula, R.L. Bettinger, S.B. Brush, A.B. Damania, P.E. McGuire and C.O. Qualset, eds. Biodiversity in agriculture - Domestication, evolution and sustainability. Cambridge University Press, Cambridge, United Kingdom. Link

2005. Pujol B. & D. McKey. Domestication of cassava: understanding the ecological strategy of regeneration and growth opens perspectives for crop improvement. Pages 536-553 in Bureau des Ressources Génétiques, eds. A dialog for the diversity. Les Actes du BRG 5. BRG, Paris, France.

2003. Emperaire L., G. Santos Mülhen, M. Fleury, T. Robert, D. McKey, B. Pujol & M. Elias. Genetic and morphological diversity and local management of cassava in Amazonia (Brazil and the Guianas). Pages 247-267 in Bureau des Ressources Génétiques, eds. Genetic inheritance: the diversity and the resource. Les Actes du BRG 4. BRG, Paris, France.

R protocol quantitative genetics random regression animal model
PEDIGREE
DATARNFR
DATAQGRR
DATAPRR